Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento

Ir y venir de la estación espacial

Europa da los toques finales a la nave espacial que tendrá la misión de abastecer a la Estación Espacial Internacional, como la nave espacial automática más potente jamás construida.

Quizá la presencia majestuosa de la Estación Espacial Internacional (ISS) nos haga pensar que los seres humanos estamos colonizando el espacio. Pero no es verdad. Aunque desde la superficie de nuestro planeta nos asombremos del portento no sólo tecnológico, sino también diplomático y político que conforma esa estación espacial nuestra, de todos, a diferencia de las anteriores que fueron estadounidenses, rusas o soviéticas, sigue siendo un apéndice de la superficie, dependiendo de ella para casi todas sus necesidades.

El espacio se colonizará realmente cuando en nuestras estaciones y naves espaciales podamos producir alimentos, obtener oxígeno y agua, reciclar nuestros desechos y estabilizar lo que se conoce como un ecosistema cerrado y, por tanto, autosuficiente, un sistema que sólo necesita la energía del sol, como nuestro planeta o los más cuidados acuarios donde las plantas utilizan la energía solar para separar el bióxido de carbono en oxígeno respirable y en carbono como materia prima para alimentos. Mientras ello no ocurra, nuestro planeta sigue siendo único, y de él dependen los alimentos, el oxígeno, el agua y todos los bienes (desde ropa y jabón hasta medicamentos e instrumentos científicos) de la Estación Espacial.

El desafío es llevar, de la forma más eficaz y económica, lo necesario a nuestro emplazamiento en el espacio: la posición orbital que ocupa la ISS. Y es que ya cuando las superpotencias estaban empeñadas en la carrera por llegar a la Luna, muchos estudiosos y visionarios advirtieron que el recurso más valioso que nos ofrecía el espacio era, precisamente, el espacio, con su casi vacío y su libertad de la atracción gravitatoria (esto no es exacto, pero la descripción es útil). Estos elementos abren posibilidades amplísimas para la investigación científica y el desarrollo tecnológico e industrial. Ir a la Luna era un logro impresionante, pero el costo y el riesgo (que en la misión del Apolo 13 estuvo a punto de terminar en tragedia) dejaron muy pronto de hacer razonable continuar con los viajes lunares, sobre todo cuando el espacio estaba tan cerca, apenas a unos cientos de kilómetros sobre la superficie terrestre. Para ir y volver a esa altura se diseñaron los transbordadores espaciales, de accidentada historia, y la Estación Espacial Internacional, la más reciente nave continuamente habitada que viaja a una altura media de 400 kilómetros sobre la superficie terrestre a una velocidad media de 27.800 kilómetros por hora, con lo cual da la vuelta a la tierra casi 16 veces al día. Esta estación sería el resultado, en cierto modo forzado, de la fusión de proyectos que no eran viables hacer de modo independiente por parte de los países que los emprendieron: la estación Freedom de Estados Unidos, el módulo experimental japonés Kibo, la estación Mir 2 de Rusia y la estación Colón de la Agencia Espacial Europea.

Al cumplirse (sin casi atención mediática) siete años de habitación continua de la ISS el pasado 2 de noviembre, la ISS ha recibido servicio de transporte de personas y bienes fundamentalmente por parte de las naves Soyuz y Progreso rusas, y los transbordadores orbitales espaciales estadounidenses. A partir de 2008, parte de esa tarea será asumida por el ATV, siglas en inglés de “vehículo automatizado de transferencia", nave capaz de llevar hasta 9 toneladas de carga a la ISS guiada únicamente por un sistema automatizado de extraordinaria precisión. El ATV se mantendrá integrado como almacén presurizado de la estación durante seis meses, al cabo de los cuales volverá a la tierra con 6,5 toneladas de desperdicios generados por la habitación humana de la estación y se autodestruirá en una flamígera reentrada a la atmósfera sobre el Océano Pacífico. Los planes actuales contemplan la construcción y puesta en funcionamiento de hasta 7 ATV, lo que resolvería gran parte de las necesidades materiales de la estación espacial durante otros tantos años.

El ATV puede llevar de 1.500 a 5.000 kilogramos de carga seca (bienes de reabastecimiento, alimentos, materiales científicos, etc.), hasta 840 kilogramos de agua, hasta 100 kilogramos de gases (nitrógeno, oxígeno y aire), y hasta 4.700 kilogramos de combustible para reabastecer a la estación y para sus propias maniobras de acoplamiento, desacoplamiento y reentrada. Aunque la estación cuenta con avanzados sistemas de reciclaje de agua y gases (de otro modo las necesidades de los habitantes de la estación serían imposibles de abastecer desde la Tierra), el agua y los gases que llevará el ATV sustituyen las partes perdidas por la ineficiencia que aún sufren tales sistemas.

El primer vuelo operativo del ATV se llevará a cabo a principios de 2008, tentativamente en el mismo mes de enero, a cargo de la nave bautizada "Jules Verne” en homenaje al escritor y visionario francés. Este ATV ya está siendo puesto a punto en Noordwijk, en el sur de Holanda, en el cuartel general del centro europeo de investigación y tecnología espacial de la ESA. Una de las últimas interrogantes expetimentales se disipó en octubre, cuando un cohete Ariane 5 en órbita probó la secuencia de encendido del ATV, simulando el reencendido que deberá realizar el ATV una vez que esté en órbita a bordo del cohete Ariane para ajustar su órbita y dirigirse a la estación.

El proyecto ATV costará alrededor de 1.300 millones de euros, con los que, además de superar uno de los mayores desafíos de la Agencia Espacial Europea, será la bisagra fundamental para cubrir el hueco que dejará la retirada de los transbordadores espaciales, dado que un reemplazo para ellos aún está lejano en el tiempo para la siempre asediada NASA. El ATV y las naves rusas serán así las líneas vitales de materiales y personal de reemplazo para garantizar que la estación espacial europea cumpla con sus objetivos.

Los datos del camión espacial europeo

Comparado frecuentemente con un autobús londinense de dos pisos por tener dimensiones similares, el ATV es un cilindro de 10,3 metros de largo con un diámetro de 4,5 metros, lo que le da un volumen de 48 metros cúbicos que estarán presurizados al estar unido a la estación espacial, casi tres veces la capacidad de las naves rusas de carga Progreso-M. El ATV está formado de dos módulos, el primero, de servicio, es el encargado de la propulsión, con cuatro motores principales y 28 pequeños motores auxiliares para realizar con exactitud la delicada tarea de acoplarse con la estación, tarea que está a cargo del segundo módulo. Todo el conjunto será lanzado desde el puerto espacial europeo de la Guayana Francesa por un cohete Ariane 5.

Nueva vacuna contra un antiguo virus

El herpes zóster, una dolorosa afección que aumenta entre los mayores de 65 años de edad, tiene hoy una nueva arma para su control.

Varicella zoster, el virus de la varicela y también
causante del herpes zoster
(Foto D.P. de CDC/Dr. Erskine Palmer/B.G. Partin,
vía Wikimedia Commons)
Un ataque de herpes zóster, también conocido como “culebrilla”, dura de dos a cuatro semanas y comienza habitualmente con sensibilidad a la luz, dolor de cabeza, fiebre y malestar general. Estos síntomas pueden anunciar también una migraña o varios tipos de infecciones, y por ello el paciente puede verse sujeto a diversos diagnósticos equivocados que retrasan el tratamiento correcto de la afección. En un plazo de aproximadamente una semana se presenta un dolor extremo en los nervios afectados, donde se presenta, en la mayoría de los casos, una erupción que formará dolorosas vesículas llenas de un líquido seroso, y que luego se llenan de sangre para formar costra en un plazo de 10 días más mientras el dolor cede lentamente. Además, puede haber síntomas tan preocupantes como la pérdida de la audición, ceguera, encefalitis, neumonía y, en muy pocos casos, llevar a la muerte del paciente.

Una vez que ha desaparecido la erupción, aproximadamente uno de cada cinco pacientes desarrolla una neuralgia postherpética (NPH), un atroz dolor constante y debilitante que no siempre responde al tratamiento y que puede alterar radicalmente la vida ordinaria del paciente durante meses o, incluso, años.

El responsable de este cuadro sin duda preocupante es el virus Varicella zoster, o virus del herpes humano, muy conocido por ser el responsable de la varicela, esa común enfermedad que adquieren, padecen y superan prácticamente todos los niños. La varicela es más benigna en los pacientes de menor edad, y casi nunca tiene secuelas graves, comenzando con síntomas gripales que evolucionan hacia dos o tres oleadas de erupciones con picor que forman pequeñas llagas abiertas que, habitualmente, sanan sin dejar cicatriz. El principal peligro de la varicela es el contagio a mujeres embarazadas, ya que el virus puede dañar gravemente a los fetos de menos de 20 semanas de desarrollo, provocando una variedad de malformaciones y desórdenes que pueden ser sumamente severos. El tratamiento de los síntomas de la varicela implica, según decisión del médico, el uso de un poco de bicarbonato de sodio en la bañera y el uso de antihistamínicos para paliar el prurito, parecetamol e ibuprofeno (pero nunca, nunca, aspirina ni medicamentos que la contengan), una buena higiene de la piel para evitar infecciones secundarias y la varicela desaparece al cabo de unos veinta días, pero su agente causante, el virus del herpes humano, no lo hace.

Así como la ciencia ha descubierto diversos antibióticos para luchar contra infecciones causadas por bacterias y otros organismos unicelulares, la lucha contra los virus es una historia totalmente distinta. Los antibióticos son absolutamente inútiles contra los virus (razón por la que no se recomienda el uso de antibióticos en episodios de gripe, que es ocasionada por un virus). Para evitar las infecciones virales hemos acudido, principalmente, a las vacunas, que al darle al cuerpo una forma debilitada del virus le estimula a producir defensas contra dicho virus, de modo que al producirse una infección sea el propio cuerpo el que enfrenta a los virus. En el caso de la varicela, la vacuna apenas se puso a disposición de la práctica médica en 1995, pero la protección que ofrece no es permanente, y la vacuna debe volver a administrarse cada diez años.

El virus del herpes humano es eliminado de nuestro cuerpo por las defensas excepto en los ganglios adyacentes a la columna vertebral, y de la base del cráneo, donde permanece en estado latente. Si estos virus se reactivan, por motivos que aún no conocemos, recorren los nervios en una migración hacia la piel donde comienzan a presentar los síntomas del herpes zóster. Curiosamente, las personas que por alguna causa no hayan padecido jamás la varicela son inmune a esta forma más agresiva de la infección viral. El herpes zóster puede ser padecido por personas jóvenes, pero principalmente afecta a personas mayores de 65 años de edad, aunque puede ser padecido por personas jóvenes. Las armas del médico en ese caso están muy limitadas: algunos antivirales que inhiben la replicación del ADN del virus son el principal tratamiento, junto con diversos medicamentos que disminuyen la severidad de los episodios. El tratamiento temprano con aciclovir reduce la duración del ataque y, sobre todo, evita los más graves síntomas y la gravedad de la neuralgia postherpética, si ésta llega a presentarse. El tratamiento puede incluir además reposo en cama, lociones tópicas para calmar la erupción, aplicación de compresas frías en las zonas cutáneas afectadas, esteroides e incluso antidepresivos, si los efectos del ataque se reflejan muy notablemente en el estado de ánimo del paciente.

En 2006, finalmente, se aprobó para su utilización una vacuna derivada de la que se utiliza contra la varicela. En un estudio en el que se administró la vacuna a 38.000 pacientes se demostró que evitaba la mitad de los casos y, principalmente, se reducían los casos de neuralgia postherpética en dos tercios. Así, aunque la vacuna no es tan efectiva como lo son otras que utilizamos, su utilidad puede ser grande en cuanto a la cantidad de sufrimiento que puede evitar. Sin embargo, y pese a que ya se está administrando en lugares como el Reino Unido, se trata de una vacuna costosa (entre 100 y 200 euros) de la que aún no se conocen sus posibles efectos secundarios indeseables retardados, y tampoco se sabe durante cuánto tiempo estarán protegidos quienes se vacunan. En términos generales se recomienda sólo para personas de más de 60 años que no tengan alergia a ningún componente de la vacuna, que no tengan debilitado el sistema inmune por alguna otra afección, que no tengan un historial de cáncer de médula ósea o sistema linfático y que no tengan tuberculosis activa y sin tratar. Pese a todas las advertencias y conocimiento aún escaso de la vacuna, algunas personas, especialmente quienes ya han sido víctimas de un ataque de herpes zóster, consideran que conviene vacunarse, sin duda alguna.

La exposición como factor de protección

Una importante observación realizada en el estado de Massachusets, en los EE.UU., fue que la incidencia de herpes zóster aumentó hasta casi duplicarse desde que se empezó a incrementar la vacunación infantil contra la varicela, de 1999 a 2003, confirmando que los adultos mejoraban su protección inmune contra el herpes zóster si estaban expuestos a niños con varicela. Quizá una de las mejores formas de mejorar la efectividad de la vacuna contra el herpes zóster sea disminuir el uso de la vacuna contra la varicela, una paradoja que presenta difíciles aristas éticas y una elección compleja que tarde o temprano deberán tomar las autoridades sanitarias.

Un mundo sin petróleo

Más lentamente de lo deseable, nos empezamos a preparar para un mundo sin petróleo, en el que la energía deberá provenir de otras fuentes, con sus ventajas y sus desventajas.

Los problemas de una economía basada en el petróleo se exhiben con gran frecuencia, en las cifras de contaminación, en los accidentes que involucran a buques petroleros, en el poder excesivo de las empresas petroleras. Sin embargo siguen siendo grandes las ventajas del petróleo: es abundante, es barato y produce muchísimos componentes de gran utilidad. Un barril de petróleo (159 litros) contiene entre 5% y 30% de componentes que se convierten en gasolina, y en casos extremos hasta el 50% del barril se puede transformar en gasolina con distintos métodos. El resto del petróleo rinde aceites lubricantes, querosenos, combustible de aviones, diesel, aceite para quemar y una gran variedad de sustancias que se utilizan en la creación de plásticos: etileno, propileno, benceno, tolueno y diversos xilenos. Estas palabras solas no significan mucho para la mayoría de nosotros, pero adquieren sentido cuando hablamos de polietileno, cloruro de polivinilo (PVC), acrílico, poliestireno, resinas epóxicas, nylon, poliuretano o poliéster. Son todos materiales que en distintas formas definen la vida contemporánea.

Sin embargo, promovamos mucho o poco la sustitución del petróleo por otras fuentes de energía, el hecho es que el petróleo es un recurso que se agotará tarde o temprano, casi ciertamente en este mismo siglo, de modo que la búsqueda de fuentes alternativas de energía es cada vez más una prioridad. Idealmente, estas fuentes alternativas serán más limpias, más baratas y más accesibles, pero de momento cada una tiene desventajas que deben superarse. La energía solar, siendo gratuita, exige todavía un costo muy elevado en equipo de instalación, por lo que el coste de utilizarla sigue siendo más alto que el de otras alternativas cuando se utiliza para la generación de energía eléctrica, aunque es cada vez más competitiva, pero aplicada en automóviles ofrece poca velocidad y potencia.

Una de las más interesantes opciones actuales para los automóviles es el hidrógeno. Este elemento es un portador de energía de gran capacidad, lo que quiere decir que podemos tomar energía producida por presas hidroeléctricas, carbón, mareas o paneles solares y almacenarla en hidrógeno para llevarlo a donde se necesite. El hidrógeno no existe en nuestro planeta en forma de gas libre, de modo que para poder utilizarlo debemos aislarlo a partir de otros compuestos que lo contienen, por ejemplo el agua, la biomasa o las moléculas de aire. Actualmente se estudia a diversas bacterias y algas que emiten hidrógeno como producto de su metabolismo.

La celdilla de combustible
Del mismo modo en que la electricidad es un portador de energía (que se toma de la combustión, del movimiento del agua en una presa hidroeléctrica, del calor de la tierra, etc.) y para poder aprovecharla debemos convertirla en calor, movimiento u otras formas de trabajo mediante resistencias y motores, la energía que se puede almacenar en el hidrógeno se utiliza mediante las celdillas de combustible. Actualmente, varios países, instituciones educativas y empresas privadas investigan la forma de tener celdillas de combustible eficientes y que resulten prácticas y económicamente viables en un plazo de una década o poco más.

Por estos días, un importante fabricante de automóviles de los Estados Unidos, General Motors, está haciendo la primera prueba importante de automóviles impulsados por celdillas eléctricas distribuyendo un centenar de autos de hidrógeno en los Estados Unidos, Alemania, Corea del Sur, China y Japón. El motivo por el que se han elegido estos países es, principalmente, que cuentan con instalaciones donde las personas que los utilizarán pueden reabastecerse de hidrógeno. Dado que es la primera prueba a gran escala, se ha buscado sobre todo que los vehículos, cuyo exterior es el de un conocido monovolumen, queden en manos de personalidades famosas, políticos, mandos militares y otras personas con influencia, pero también incluirá a personas comunes.

La celdilla de combustible es un dispositivo de conversión de energía electroquímica que toma el hidrógeno, lo combina con oxígeno y produce una reacción química que genera electricidad en forma de voltaje de corriendte directa y, como único subproducto, agua pura, la unión de dos moléculas de hidrógeno y una de oxígeno. El problema en el que trabajan numerosos investigadores es lograr una forma de celdilla que sea práctica y económicamente viable. Hay al menos media docena de tipos de celdilla de combustible en los laboratorios hoy en día.

La celdilla de combustible de membrana de intercambio de polímeros es la más prometedora para los automóviles. Está formada, de un ánodo o extremo negativo y un cátodo o extremo positivo, una membrana de intercambio de protones que tiene el aspecto del film de cocina y un catalizador que facilita la reacción del hidrógeno y el oxígeno, y aunque puede estar formado de partículas de materiales tan costosos como el platino, utiliza poca cantidad de este material y no se desgasta, ya que sólo facilita la reacción sin aportar materiales a ella. Se introduce hidrógeno a presión del lado del ánodo, que al pasar por el catalizador se separa en dos iones de hidrógeno (que no son sino dos protones libres) y dos electrones. Los electrones pasan al circuito externo, en forma de corriente eléctrica. El oxígeno a presión, que entra por el lado del cátodo, se separa y cada uno de sus átomos atrae a dos moléculas de hidrógeno y a dos electrones del circuito para crear una molécula de agua. Una sola celdilla de éstas produce poca corriente, pero apiladas en grandes cantidades se pueden generar importantes voltajes, con una eficiencia energética de hasta un 64% comparada con la eficiencia de 20% de la gasolina, es decir, un auto de hidrógeno puede utilizar para moverse el 64% de la energía contenida en el hidrógeno, mientras que uno de gasolina sólo usa el 20% en esa tarea, y el resto se disipa como calor. Esta eficiencia podría crecer en el futuro, con nuevas investigaciones y mayor voluntad social y política de frente al agotamiento del petróleo.

Una innovación… del siglo XIX

Contrariamente a lo que podríamos pensar, la celdilla de combustible no es un invento moderno. Sus bases teóricas fueron descubiertas por el científico alemán Christian Friedrich Schönbein in 1838, base sobre la cual fueron creadas en la práctica por Sir William Grove y anunciadas en la Academia Francesa en 1839. 50 años después, Ludwig Mond y Charles Langer intentaron utilizarla para producir electricidad, y en la década de 1960 sus principios fueron empleados en las baterías de las cápsulas espaciales Géminis.

María Sklodowska Curie: Dar la vida por el conocimiento

Dos premios Nobel, una pasión ardiente por saber y un compromiso llevado a sus últimas consecuencias son las señas de identidad de la mayor científica del siglo XX.

Marie Curie en su laboratorio
(Foto D.P. vía Wikimedia Commons)
Para una chica de fines del siglo XIX no era lo más común decir soñar con ser una investigadora científica. No era común, tampoco, declararse agnóstica en la adolescencia renunciando al catolicismo que era definitorio de su cultura, la polaca, ni que dejara de dormir o comer concentrada en sus estudios, y menos aún que se implicara políticamente en los proyectos revolucionarios estudiantiles contra la Rusia zarista. Parecería, por momentos, que tal retrato correspondería a una feminista innovadora de la segunda mitad del siglo veinte. Pero nada de lo que conformó la vida de María Sklodowska era común desde que nació el 7 de noviembre de 1867 como hija menor de dos profesores de escuela militantes de la educación como motor del cambio, que la impulsaron a romper los moldes, a ser independiente en la ciencia y la política, a cambiarse para cambiar el mundo.

Habiendo sido rechazada en la universidad por ser mujer, a pesar de sus excepcionales resultados académicos, María y su hermana Bronya acordaron apoyarse para sus estudios, tocando primero a Bronya partir a París. María trabajó como institutriz de los hijos del dueño de una plantación de remolacha, ocupándose en su tiempo libre de enseñar a leer a los hijos de los campesinos, aún a riesgo de ser castigada por los ocupantes rusos en caso de ser descubierta. Finalmente, en 1891, pudo ir a París y matricularse en la Sorbona, consiguiendo en sólo tres años sus títulos en matemáticas y ciencias físicas, y conociendo al profesor Pierre Curie, con quien se casó en 1895.

La época en que vivían los Curie era la más emocionante en el mundo de la física. Día a día se iba conformando y modificando una comprensión sobre la composición fundamental de la materia que superaba ampliamente todo lo conseguido en la historia humana anterior: formas de radiación recién descubiertas exigían explicación para ser parte de una visión integral y ordenada de la materia: los rayos X, la radioactividad, los nuevos modelos del átomo, conocimientos originales, elementos antes desconocidos, nuevas dudas y nuevas preguntas electrizaban el ambiente en el que María, ahora Marie, y Pierre Curie emprendieron sus investigaciones. No contaban con laboratorios, financiamiento, ni apoyo moral para estimularlos. Daban clases en abundancia para financiar sus experimentos, desarrollando como requisito previo novedosas técnicas químicas como las que ideó Marie para separar el elemento radio de los minerales radiactivos y tener cantidades suficientes para estudiarlo, caracterizarlo y darle un sitio en la tabla periódica de los elementos introducida apenas en 1869 por Dmitri Mendeleev.

Marie empezó a trabajar en la radioactividad como su proyecto para alcanzar el doctorado en física, y en julio de 1898 los Curie publicaron un artículo dando cuenta del descubrimiento del polonio, el altamente radiactivo elemento 84 de la tabla periódica. En diciembre de ese año publicaban el descubrimiento de otro elemento también radiactivo, el radio, número 88. Cabe notar que, dado que Polonia no existía como país, dividida entre Rusia, Prusia y Austria, la activista política que vivía dentro de Marie Curie pensó que al darle a su descubrimiento el nombre de su tierra, llamaría la atención sobre la falta de independencia que sufrían los polacos. Sería el primer elemento que recibiera nombre por motivos puramente políticos.

Para llegar a estos descubrimientos, Marie había observado que el mineral radiactivo presentaba un comportamiento curioso: de él se extraían el uranio y el torio, dos sustancias radiactivas, pero el material restante, sin esos dos elementos, era más radiactivo que antes, lo que indicaba claramente que contenía otro u otros elementos, aún desconocidos, responsable de esa radiactividad. Sin embargo, los resultados de 1898 necesitaban sustentarse en muestras más abundantes de ambos elementos, y para tenerlas, los Curie tuvieron que procesar toneladas y toneladas de mineral de pechblenda del que extrajeron los elementos que buscaban. Ahora, al menos, tenían el apoyo de algunos empresarios e instituciones científicas para la ingente tarea que, por ejemplo, implicaba procesar una tonelada métrica de mineral como la pechblenda para obtener apenas 100 millonésimas de gramo de polonio. Pero confirmaron sus descubrimientos y Marie Curie alcanzó el doctorado en 1903, como primera mujer en conseguirlo en Francia. Ese mismo año, fue también la primera mujer en obtener el Premio Nobel, cuando la pareja fue nombrada ganadora del premio de física. Gracias a ello, Pierre fue nombrado profesor en la Sorbona y María fue contratada como jefe de laboratorio.

La alegría compartida duró poco, pues en 1906 Pierre murió en un accidente callejero. María pronto se convirtió en la primera mujer profesora de la Sorbona, además de continuar con su trabajo de laboratorio y de fundar el Instituto del Radio en memoria de su esposo. Lo que no consiguió, sin embargo, fue ser la primera mujer admitida como miembro en la Academia Francesa, pues fue rechazada por un voto. Como respuesta, la Academia Sueca le concedió en 1911 el Premio Nobel de Química, convirtiéndola, hasta hoy, en la única persona que ha obtenido dos premios Nobel en dos ramas distintas de la ciencia.

Durante la Primera Guerra Mundial, María Curie usó su influencia para crear una flotilla de 20 estaciones móviles de rayos X y 200 estacionarias, salvando numerosas vidas, apoyada por su hija, la también física Irene Curie, y creó las primeras formas de radioterapia para destruir tejidos enfermos. De vuelta a la paz, continuó promoviendo el Instituto del Radio, obteniendo financiamiento y apoyo para seguir el trabajo científico con su familia. Sin embargo ya no vio cómo se concedía en 1935 el premio Nobel de física a su hija Irene y al marido de ésta, Frédéric Joliot, por el descubrimiento de la radiactividad artificial. Enferma desde 1920 de anemia aplástica, con toda seguridad debida a su continuada exposición a la radiación, falleció en 1934.

La profesora militante

María Curie escribió sobre el grupo de jóvenes de Varsovia que buscaban autoeducarse a pesar de la represión de los ocupantes: "El propósito inmediato era trabajar en la educación de uno mismo y darle los medios para educarse a los trabajadores y los campesinos. De acuerdo con este programa, acordamos entre nosotros dar cursos por las noches, cada uno enseñando lo que mejor conocía. No es necesario decir que ésta era una organización sercreta, lo que lo hacía todo extremadamente difícil."