Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento

julio 18, 2015

Los vencedores de la difteria

Emil von Behring, creador de la antitoxina de la difteria.
(Imagen D.P.  vía Wikimedia Commons)
La reaparición de la difteria en países donde estaba aparentemente ya erradicada ha disparado una profunda reflexión sobre los movimientos antivacunas y sus efectos en la salud individual y colectiva.

Hoy es necesario explicar qué es la difteria para poder hablar de esta enfermedad, que a fines del siglo XIX era temida pues se cobraba miles de vidas de niños todos los años, y en algunos casos provocaba epidemias como las muchas que azotaron a España, especialmente en 1613, “El año del garrotillo”.

“Garrotillo” significa “sofocación” y se daba este nombre a la difteria porque bloqueaba la respiración de sus víctimas debido a la aparición de un recubrimiento o pseudomembrana de color grisáceo en las mucosas del tracto respiratorio como resultado de la infección por parte de una bacteria, la Corynebacterium diphtheriae.

La pseudomembrana de la difteria está formada por subproductos causados por la propia bacteria por medio de una potente toxina que puede entrar al cuerpo y afectar gravemente a diversos órganos, incluidos los músculos, , el hígado, los riñones y el corazón.

Hipócrates describió la enfermedad por primera vez, hasta donde sabemos, en el siglo V aEC. Desde entonces, se intentó sin éxito combatir la enfermedad. Sus pacientes, sobre todo niños, recorrían el curso de la enfermedad y aproximadamente un 20% de los menores de 5 años y el 10% de los demás, niños y adultos, morían, mientras que otros quedaban afectados de por vida ante la impotencia de todos a su alrededor.

El primer paso para vencer a la difteria, que recibió su nombre definitivo apenas en 1826 a manos de Pierre Bretonneau, lo dio el suizo alemán Edwin Klebs en 1883, quien identificó a la bacteria causante de la enfermedad. Sólo un año después, el alemán Friedrich Loeffler aplicó los postulados que había desarrollado con Robert Koch para demostrar que efectivamente esa bacteria era la causante de la difteria.

Mientras se hacían estos estudios, otros médicos buscaban aliviar los síntomas que provocaban la muerte de sus pacientes, principalmente la asfixia provocada por el bloqueo de las vías respiratorias debido a la pseudomembrana. Para combatirla, se hizo primero común la práctica de la traqueotomía (cortar la tráquea para que el aire pase directamente hacia ella y a los pulmones) y en 1885 se empezó a difundir la técnica de la intubación para mantener abiertas las vías respiratorias. Su creador, el estadonidense Joseph P. O’Dwyer moriría, por cierto, de lesiones cardiacas provocadas por la difteria de la que se contagió en el tratamiento de sus jóvenes pacientes.

Los franceses Émile Roux, que durante mucho tiempo había sido la mano derecha de Louis Pasteur, y Alexandre Yersin trabajaron sobre esta base y demostraron que la bacteria no entraba al torrente sanguíneo, pero sí lo hacía la toxina que producía y que, aún sin la presencia de la bacteria, la sustancia bastaba para causar difteria en animales experimentales. Esto abrió el camino para que el japonés Shibasaburo Kitasato y el alemán Emil von Behring diseñaran un sistema para tratar la toxina de modo tal que provocara la inmunidad en animales. El suero sanguíneo de esos animales, que contenía la antitoxina de la difteria, podía entonces utilizarse para curar esa enfermedad en otro animal. Émile Roux, que confirmó los experimentos de los anteriores, fue el primero que aplicó la antitoxina a grandes cantidades de pacientes, tratando a 300 niños franceses en 1894.

La difteria era curable. O al menos controlable. La antitoxina no revierte los daños ya causados, pero sí impide que la toxina siga haciendo estragos, de modo que un tratamiento temprano era mucho mejor que uno tardío. El procedimiento de creación de antitoxinas se utilizaría pronto para tratar otras enfermedades mortales provocadas por bacterias, como la fiebre tifoidea, el cólera y la septicemia.

Liberar a la humanidad del dolor y desesperación causados por la difteria dio a sus vencedores el primer Premio Nobel de Medicina o Fisiología, otorgado en 1901, en la persona de Emil Adolf Von Behring aunque, para muchos, debió haberlo recibido de modo compartido al menos con Yersin y Roux.

Una vacuna que impidiera que se contrajera la enfermedad era el siguiente paso. Pero las vacunas para las afecciones provocadas por bacterias no son iguales que las que se utilizan para las enfermedades virales, donde una proteína del virus, una parte de mismo o todo el virus debilitado o muerto se inoculan para que el sistema inmune “aprenda” a producir defensas que utilizaría en caso de verse sometido a una infección. En el caso de las bacterias, las vacunas se hacen con frecuencia utilizando “toxoides”, que son formas o versiones modificadas de la toxina causante del trastorno.

La vacuna contra la difteria sólo se pudo hacer realidad tiempo después, gracias a que el británico Alexander Thomas Glenny descubrió que podía aumentar la eficacia del toxoide diftérico tratándolo con sales metálicas que aumentaban tanto su efectividad como la duración de la inmunidad que podía impartir. Estas sales se llaman coadyuvantes, y por desgracia hoy son satanizadas por la ignorancia de quienes se oponen a las vacunas afirmando, sin prueba alguna, que causan efectos graves, suficientes como para preferir el riesgo de que un niño muera de alguna enfermedad prevenible.

Desde la introducción de la vacuna contra la difteria, los casos cayeron dramáticamente. Así, entre 2004 y 2008 no hubo casos de difteria en Estados Unidos, y los niños españoles estuvieron libres de ella durante casi 30 años, hasta que en 2015 se produjo un caso desgraciadamente mortal.

La vacuna contra la difteria, se suele aplicar en una vacuna triple con el toxoide tetánico y la vacuna contra la tosferina, dos afecciones tan aterradoras como la difteria. La vacuna se conoce como Tdap o Dtap y se aplica en 4 o 5 dosis a los 2, 4, 6 y 15 meses de edad para garantizar una protección fiable.

Postulados de Koch

Un paso fundamental en el desarrollo de la teoría de los gérmenes patógenos que dio origen a la medicina científica fueron los cuatro pasos identificados por Robert Koch y Friedrich Loeffler para identificar al microbio responsable de una afección:

  1. El microorganismo debe estar presente en todos los casos de la enfermedad.
  2. El microorganismo se puede aislar del anfitrión enfermo y cultivarse de modo puro.
  3. El microorganismo del cultivo puro debe causar la enfermedad al inocularlo en un animal de laboratorio sano y susceptible.
  4. El microorganismo se se debe poder aislar en el nuevo anfitrión infectado y se debe demostrar que es el mismo que el que se inoculó originalmente.

El paso 3 tiene como excepción la de los individuos que pueden estar infectados con un patógeno pero no enfermar, los llamados portadores asintomáticos.

julio 11, 2015

Siempre a tu alcance: el móvil o celular

File:2007Computex e21-MartinCooper.jpg
Martin Cooper posando en 2007 con su creación, el prototipo del primer teléfono móvil o celular. (Fotografía CC de Rico Shen, vía Wikimedia Commons)

El 3 de abril de 1973, Martin Cooper, tomó un estorboso teléfono en la 6ª Avenida de Manhattan, en Nueva York y llamó a Joel Engel, informándole que la carrera por crear el primer teléfono móvil había terminado y que Engel la había perdido. Martin Cooper era científico de Motorola y Joel Engel era su rival en Bell Labs, ambos buscando inventar un teléfono móvil viable.

Menos de cien años antes, el 10 de marzo de 1876, en Boston, Massachusets, Alexander Graham Bell había logrado llamar a su asistente Thomas Watson para pedirle que fuera a donde estaba Bell, en otra habitación de la misma casa. Bell también tenía un rival, Elisha Gray, aunque el resultado de su carrera fue menos claro que en el caso de Cooper y Engel, tanto que aún hoy se debate quién debería ser considerado el verdadero inventor del teléfono. En aquella ocasión pasó apenas un año antes de que se instalara el primer servicio telefónico comercial.

El telégrafo fue el primer intento por utilizar la electricidad para la comunicación con un sencillo principio: se provocaba una variación de corriente en un cable cerrando un circuito y se podía registrar en el otro extremo del mismo. El teléfono usaba la misma base pero más compleja. Si se podía lograr que un sonido hiciera variar una corriente eléctrica, esas variaciones podrían ser registradas al otro lado de un cable y descodificadas reconstruyendo el sonido.

El receptor era un micrófono, y el de Bell fue rápidamente mejorado y desarrollado por otros inventores, incluido Thomas Alva Edison. Su principio sigue usándose hoy en todo tipo de micrófonos: hay dos placas metálicas delgadas, separadas entre sí por gránulos de carbón y a través de las cuales se aplica una corriente eléctrica. Cuando una placa, que actúa como un diafragma, es movida por un sonido, lo convierte en presión variable sobre los fragmentos de carbón, haciendo variar la resistencia eléctrica entre las placas. La corriente registra esa variación y la transmite al otro extremo de un cable, a un altavoz que realiza el mismo procedimiento a la inversa: la variación de corriente se utiliza para mover un diafragma que al vibrar reproduce los sonidos originales.

Sobre ese principio se construyó toda la industria de la telefonía, comenzando en los Estados Unidos y la Gran Bretaña. El sistema exigía que un teléfono instalado en cualquier lugar estuviera conectado a una central telefónica mediante cables. La central era la responsable de conectar físicamente al teléfono que llamaba con aquél con el cual deseaba hablar. Al principio, esto se realizaba mediante tableros de conexiones operados por empleados, generalmente mujeres, que respondían al teléfono que hacía la llamada, el interlocutor les daba el número con el cual deseaba comunicarse. Tomaban una clavija conectada al número que llamaba Y la enchufaban en la toma correspondiente al teléfono al que se deseaba llamar. Como paréntesis, el trabajo de operadora telefónica fue uno de los espacios del nacimiento del movimiento feminista laboral, mediante la organización de los primeros grandes sindicatos de operadoras a mediados del siglo veinte.

El trabajo de las operadoras pronto fue reemplazado, en gran medida, por sistemas automatizados que reconocían el número marcado Y, por medio de relés, conectaban los dos números. Sin embargo, todo el camino de un teléfono a otro, fuera en el mismo edificio o al otro lado del mundo, estaba formado por cables conductores físicos y apenas a principios del siglo XX empezaron los intentos por transmitir la telefonía a través de ondas de radio. Con ellas, en 1915 comenzaron las llamadas intercontinentales.

Pero hacer estas llamadas razonablemente accesibles exigió tender cables sobre el lecho marino para interconectar los sistemas telefónicos a ambos lados del mismo. El primer cable entró en operación en 1921, cubriendo la corta distancia (130 kilómetros) entre Cayo Hueso, Florida, y Cuba. Pero el cable que uniera a Europa con América no sería una realidad sino hasta 1956. El siguiente gran salto sería en 1962, cuando el satélite de comunicaciones Telstar I empezó a dar servicio telefónico mediante microondas que enlazaban estaciones terrestres de modo fiable. El satélite, por cierto, fue construido y desarrollado por Bell Labs.

Pero incluso antes de ese primer cable y antes de ese satélite, los Bell Labs habían desarrollado en 1947 una idea novedosa. Los enlaces de radio tenían un problema grave: la enorme potencia de transmisión que requerían los dispositivos, y que aumentaba conforme aumentaba la distancia entre ellos. Un teléfono móvil por radio, como los que empezaron a comercializarse en 1946, necesitaba una enorme fuente de potencia. La nueva propuesta era construir una serie de estaciones base, cada una de las cuales estaría en el centro de una celdilla hexagonal como la de un panal de abejas. Así, cada una necesitaría sólo la potencia necesaria para comunicarse con las seis que la rodean, mientras que los teléfonos en sí sólo tendrían que comunicarse con la estación base (o antena de telefonía móvil) más cercana. Conforme el móvil se aleja de una antena y entra en el radio de acción de otra, pasa a transmitirle a ésta segunda sin que el usuario note el salto.

Con muy poca potencia, entonces, Martin Cooper y Motorola crearon la primera red de telefonía celular experimental con la que hizo su histórica llamada. Diez años después comenzarían a venderse teléfonos grandes, estorbosos, pesados, carísimos y con batería para sólo unas horas... pero que tenían la enorme ventaja de ser precisamente, móviles. A partir de entonces, ya no llamaríamos a un lugar donde se encontrara conectado un aparato telefónico, sino que empezaríamos a llamar a personas donde quiera que se encontraran.

Lo siguiente fue, simplemente, la miniaturización, la mayor eficiencia en las baterías y el uso de sistemas electrónicos para convertir a nuestros móviles en auténticas navajas suizas informáticas y de comunicaciones... pero que siguen siendo sobre todo la herramienta para hacer lo que hizo Bell: llamar a otra persona.

Las ondas de la telefonía móvil

Durante mucho tiempo ha sobrevivido el mito de que las ondas de radio con las que se comunican los teléfonos móviles podrían tener efectos negativos sobre la salud. La realidad es que hasta hoy no se ha demostrado ninguno de esos efectos. Más aún, es poco plausible que esas ondas pudieran hacernos daño ya que son mucho menos potentes (de menor frecuencia y ancho de banda) que las de la luz visible. Si fueran dañinas, pues, la luz lo sería mucho más. En realidad, las radiaciones electromagnéticas peligrosas son las que están por encima de la luz visible, las que comienzan en el rango ultravioleta, el UV del que sabiamente nos protegemos con pantalla solar.